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ABSTRACT 

Electrical synapses are gap junctions between neurons that are ubiquitous across brain regions 

and species.  The biophysical properties of most electrical synapses are relatively simple—

transcellular channels allow nearly ohmic, bidirectional flow of ionic current. Yet these 

connections can play remarkably diverse roles when placed into different neural circuit 

contexts. Here I review recent findings illustrating how electrical synapses may excite or inhibit, 

synchronize or desynchronize, augment or diminish rhythms, phase-shift, detect coincidences, 

enhance signals relative to noise, adapt, and interact with nonlinear membrane and 

transmitter-release mechanisms. Most of these functions are likely to be widespread in central 

nervous systems. 
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INTRODUCTION 

Electrical synapses—neuronal gap junctions—are ubiquitous components of vertebrate and 

invertebrate central nervous systems. Why?   

A search for the answer can start with the appealing features of electrical synapses: impressive 

signaling speed, bidirectional communication (in most cases), functional and structural 

simplicity, energy efficiency, and an operating range that spans all physiological voltages 

(Bennett, 1997). These characteristics are fairly well conserved across the electrical synapses of 

all species and brain regions, at least compared to chemical synapses with their multiplicity of 

transmitters, receptors, release dynamics, and plasticity mechanisms. Perhaps electrical 

synapses are well adapted to some very particular, specialized, yet common function that all 

neural circuits require? 

This seems unlikely, even if we consider only the early descriptions of electrical synapses. 

Strong, steeply rectifying connections in crayfish and hatchetfish suggested advantages of 

signaling speed, direction, and security (Furshpan and Potter, 1957, 1959; Auerbach and 

Bennett, 1969). Weaker, bidirectional electrotonic coupling in lobsters, fish, and cats implied 

roles for coordinating and synchronizing the activity of neural networks (Watanabe, 1958; 

Bennett et al., 1963; Llinas et al., 1974). Speed has been deemphasized in mammalian systems 

because the synaptic delays of chemical synapses at 37°C rival those of electrical synapses 

(Sabatini and Regehr, 1996), but synchrony has remained a broadly popular function for 

electrical synapses (Bennett and Zukin, 2004; Connors and Long, 2004). 

The computational functions of electrical synapses are far richer than “speed and synchrony” 

imply, as Marder (1998) pointed out. Our understanding of these functions has multiplied as 

electrical synapses have been explored in more types of neurons and their circuits. Here I will 

examine some of the more recent findings, with a bias toward studies of vertebrate systems. I 

will not discuss the detailed structure and biophysics of gap junction channels, or the roles of 

electrical synapses in development, plasticity, or intercellular chemical signaling, which have 

been reviewed recently and elegantly (Elias and Kriegstein, 2008; Belousov and Fontes, 2013; 

O'Brien, 2014; Pereda, 2014; Palacios-Prado et al., 2014; Niculescu and Lohmann, 2014; Haas et 

al., 2016; Pereda, 2016; Skerritt and Williams, 2017).  My goal is to review the eclectic functions 

of electrical junctions. 

Electrical synapses can excite and inhibit 

Electrical synapses heed Ohm’s Law: net ionic current will flow through the gap junction 

channels proportional to the transjunctional voltage (Bennett, 1977; Connors, 2009). Therefore, 

anything that depolarizes one neuron—action potentials, excitatory postsynaptic potentials 

(EPSPs), low-threshold calcium currents, for example—relative to its more quiescent 

neighboring cells can lead to transjunctional current that excites the neighbors. 

Unlike chemical synapses, the large majority of electrical synapses conduct bidirectionally. This 

is especially true in vertebrate systems. If input patterns change and an active neuron suddenly 

becomes quiet while previously quiet neurons activate, current through the electrical synapses 

will reverse direction.  Unlike most chemical synapses, electrical synapses are also analog; 
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spikes are not necessarily required for transmission, their signal is not quantized in vesicles, and 

the strength of their influence depends in a graded way on the transsynaptic voltage difference. 

[Single gap junction channels do have a gating mechanism that abruptly opens and closes them, 

so in this narrow sense electrical synaptic transmission is quantized by the currents through 

individual channels (Harris and Locke, 2009). However single-channel currents of neuronal gap 

junction channels are usually small, the number of channels in an electrical synapse is usually 

large, gap junction channels may have both voltage-sensitive and -insensitive states (Moreno et 

al., 1994), and voltage changes are low-pass filtered by local membrane properties, so in 

practice many electrical synapses operate in an effectively analog mode. A caveat: while the 

number of channels in a gap junction plaque is often large, this may be mitigated by the very 

small fraction—less than 1% —of channels that actually contribute to junctional conductance 

(Lin and Faber, 1988; Curti et al., 2012).] The upshot of bidirectional analog signaling is that 

electrical synapses allow a group of neurons to rapidly share and distribute excitation. This 

distribution can lead to interesting patterns of network activity, including synchrony, rhythms, 

and more. 

Neurons can also inhibit with electrical synapses, in various ways.  An obvious but potentially 

important way is when one or more cells generate inhibitory PSPs (IPSPs) from chemical 

synapses and transmit a fraction of the IPSP’s hyperpolarization to neighbors through electrical 

synapses.  A more subtle form of inhibition was succinctly described by Bennett (1977): “An 

important case…is provided by cells that are closely coupled electrically and are synchronized 

by electrotonic synapses (see below). In this situation the coupling synapses both excite and 

inhibit. A depolarized cell depolarizes its less depolarized neighbors and is simultaneously made 

less depolarized by them. Restated, if one cell is at a potential where it excites another cell, it is 

simultaneously inhibited by that other cell.” 

Another inhibitory mechanism occurs when an action potential (a decidedly excitatory event) in 

one neuron is transformed into a primarily inhibitory electrical PSP as it passes through an 

electrical synapse (Galarreta and Hestrin, 2001). Such a transformation works best with action 

potentials of a particular shape, namely a very brief depolarizing spike followed by a deep and 

much longer-lasting afterhyperpolarization (AHP).  This kind of action potential is severely 

distorted as it is transmitted via electrical synapses because of low-pass filtering, i.e. high-

frequency components of the action potential (the spike) are attenuated more than low-

frequency components (the AHP) (Gibson et al., 2005).  Filtering in this case is not due to any 

magical property of gap junction channel biophysics. It occurs because all cell membranes have 

considerable electrical capacitance and resistance, and that combination tends to slow the 

speed of all voltage changes by amounts dictated by the cells’ membrane time constants (Rall, 

1969; Bennett, 1977).  The outcome for a quick spike-slow AHP waveform, as it passes from 

cell-to-cell via electrical synapses, is that the depolarizing spike shrinks considerably (to perhaps 

1% of its presynaptic height, in a typical case), and is then called a “spikelet”, while the AHP 

shrinks much less (to about 10%) (Connors, 2009).  The electrotonically conducted AHP can 

then exert an inhibitory effect on the postsynaptic cell.   

Electrically coupled neurons with quick spike-slow AHP waveforms are common in the 

mammalian CNS.  Examples include the fast-spiking (FS) inhibitory interneurons of the 

neocortex, the inhibitory Golgi cells of the cerebellum, and the inhibitory Golgi cells of the 
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dorsal cochlear nucleus.  And indeed, the electrical PSPs transmitted by cortical FS cells 

(Galarreta and Hestrin, 2001; Gibson et al., 2005) and both types of Golgi cells (Dugué et al., 

2009; Yaeger and Trussell, 2016) have fast but tiny spikelets followed by relatively large, 

protracted hyperpolarizations when recorded in vitro.  These biphasic electrical PSPs have 

sequential effects, first briefly (~2 msec) and modestly exciting and then more slowly (~50-100 

msec) inhibiting. Electrically coupled neurons whose action potentials lack a deep AHP, such as 

the somatostatin-expressing interneurons of neocortex, transmit more purely monophasic, 

depolarizing electrical signals (Gibson et al., 2005). The precise shape of the electrical PSP can 

have important consequences for the spiking dynamics and synchrony of coupled networks 

(Pfeuty et al., 2003; Ostojic et al., 2009). 

The strength and even the valence of electrical PSPs can change dramatically and dynamically 

as the membrane potentials of electrically coupled neurons fluctuate. This may happen during 

shifts of sleep-wake states, slow oscillations, or pathological processes.  In a study of cortical FS 

interneurons (Otsuka and Kawaguchi, 2013), the cells’ electrical PSPs generated strong 

inhibition when cells were in depolarized states (and AHPs were large). Electrical PSPs from the 

same cells were entirely depolarizing and excitatory, however, when membrane potentials 

were in more hyperpolarized states (and AHPs were very small). In Golgi cells of the cerebellum, 

electrically conducted spike AHPs can inhibit neighboring cells in vitro (Vervaeke et al., 2010).  

Recordings from Golgi cells in intact mice show, however, that the hyperpolarizing phase of the 

electrical PSP is considerably less prominent, and the PSP has a predominantly excitatory effect 

(van Welie et al., 2016). Perhaps state-dependent factors, including more depolarized 

membrane potentials, spontaneous synaptic fluctuations, and modulation of intrinsic ion 

channels, can regulate the valence of electrical synaptic communication. 

Anything that triggers a hyperpolarization can, in principle, generate inhibition mediated by an 

electrical synapse. A novel example comes from neurons in the dorsal cochlear nucleus of mice, 

where stellate cells are electrically coupled to fusiform cells (Apostolides and Trussell, 2013). 

Glutamatergic synapses onto the fusiform cells can first trigger an EPSP and, secondarily, a 

protracted hyperpolarization mediated by the deactivation of hyperpolarization-activated cyclic 

nucleotide-gated (HCN) channels (see below). A fraction of this intrinsically generated 

hyperpolarization in the fusiform cells is transferred to stellate cells via electrical synapses 

(Apostolides and Trussell, 2014).  

Electrical synapses can mediate phase-locking, synchrony, and antisynchrony of action 

potentials 

Many neurons are superb biological oscillators (Stiefel and Ermentrout, 2016).  Synapses, 

including electrical synapses, can couple neuronal oscillators into interactive networks that 

generate simple or complex dynamics.  

One widely documented function of electrical synapses, at least in networks of similar neurons 

coupled by nonrectifying gap junctions, is synchronization (Bennett and Zukin, 2004; Connors 

and Long, 2004).  Synchrony, as defined here, means that the spike timing (or other fluctuations 

of membrane potentials) of two or more neurons coincide within some criterion of temporal 

precision.  Electrical synapses can mediate strong and temporally precise (typically as small as 
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±1 msec, but perhaps <1 μsec in favorable neural systems) synchrony of both subthreshold 

membrane potentials and action potentials under the right conditions. As each neuron receives 

a synaptic input or generates an action potential, a small ionic current moves across its 

electrical synapses into or out of its neighboring neurons. These intercellular currents influence 

the neighbors’ membrane potentials and bias their spiking probabilities slightly; spike timing, 

and thus phase compared to other neurons’ spikes, can be advanced or delayed. The emergent 

dynamics of electrically coupled excitable cells depend on multiple factors: the sites and 

strengths of electrical synapses, the intrinsic physiology and heterogeneity of the participating 

neurons, the addition of chemical synaptic interconnections, the size of the networks, and the 

nature and strength of background drives. The mechanisms by which gap junctions can mediate 

synchronous activity have been explored in an extensive theoretical and modeling literature 

(e.g. Kepler et al., 1990; Sherman and Rinzel, 1992; Chow et al., 1998; White et al., 1998; 

Moortgat et al., 2000; Traub et al., 2001; Lewis and Rinzel, 2003; Pfeuty et al., 2003; Saraga et 

al., 2006; Ostojic et al., 2009; Lewis and Skinner, 2012). 

The phenomenology of electrical synapse-mediated synchrony has been abundantly 

documented in vitro.  Examples from vertebrates range across all levels of the central nervous 

system, and include a diverse array of neuron types, sizes, and roles, including: excitatory spinal 

motor neurons (Kiehn and Tresch, 2002; Personius et al., 2007), excitatory neurons of the 

inferior olive (Manor et al., 1997; Leznik et al., 2002; Long et al., 2002), inhibitory interneurons 

of the cerebellar cortex (Mann-Metzer and Yarom, 1999; Dugué et al., 2009; Vervaeke et al., 

2010), inhibitory and excitatory neurons of the retina (Veruki and Hartveit, 2002; Trenholm et 

al., 2014), inhibitory neurons of the thalamic reticular nucleus (Landisman et al., 2002; Long et 

al., 2004), several types of inhibitory interneurons in the neocortex (Galarreta and Hestrin, 

1999; Gibson et al., 1999; Beierlein et al., 2000; Deans et al., 2001; Blatow et al., 2003; Mancilla 

et al., 2007; Caputi et al., 2009; Hu and Agmon, 2015), and neurons of the suprachiasmatic 

nucleus (Colwell, 2000; Long et al., 2005). In general, the robustness of phase-locking and 

synchrony correlate well with the strength of electrical coupling. Electrically coupled networks 

become asynchronous when coupling strengths are weak or spiking rates are low (Chow and 

Kopell, 2000). 

Demonstrations of synchronizing mechanisms in isolated preparations can be highly 

informative, and they allow detailed exploration of mechanisms, but ultimately they must be 

tested also in vivo. This has been a serious challenge to traditional methods. There have been 

very few attempts to directly measure the relationship between electrical synapses and 

synchrony in intact vertebrate brains. In an inspiring feat of electrophysiology, van Welie et al. 

(2016) recently described paired whole-cell recordings from cerebellar Golgi cells in 

anesthetized mice. Their data demonstrate, first, that Golgi cells in vivo are indeed electrically 

coupled, as in vitro work had suggested (Dugué et al., 2009); second, that electrical synapses in 

vivo can mediate spike synchrony with millisecond precision; and third, that synchrony depends 

on electrical synapses spreading both slow, subthreshold fluctuations across the Golgi network 

as well as fast, spike-triggered electrical PSPs. In vivo, precise phase-locking, including 

synchrony, occurred between spikes generated spontaneously or in response to natural sensory 

inputs (van Welie et al. (2016).  
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Dendritic electrical synapses are often not enough to induce temporally sharp spike synchrony, 

perhaps because of their weakness or locations distant from spike-generating zones (axon 

initial segments in many neurons) (Saraga et al., 2006; Lewis and Skinner, 2012; Schwemmer 

and Lewis, 2014). Active conductances in dendrites (Johnston and Narayan, 2008) may enhance 

or suppress the phase-locking effects of electrical synapses. For some neurons, a concerted 

drive from electrical and chemical synapses is required to achieve effective synchrony. 

Examples include mitral cells in the olfactory bulb (Christie et al., 2005), cerebellar Golgi cells 

(Vervaeke et al., 2012), retinal ganglion cells (Trenholm et al., 2014), and some systems of 

cortical inhibitory interneurons (Tamás et al., 2000; Hu and Agmon, 2015; Salkoff et al., 2015; 

Neske and Connors, 2016). 

Synchrony is only one possible dynamic state of electrically coupled networks, and it is 

sometimes not the most stable state.  In a pair of synchronous, electrically coupled neurons the 

phase of spikes can shift as one cell is driven more strongly than the other. If the cells remain 

phase-locked they are also necessarily frequency-locked, but the tendency for the more 

strongly driven cell to spike sooner than the second cell causes the spikes of the second to lag 

those of the first. Such phase-synchrony can break down into asynchrony when excitatory 

drives onto cell pairs, and their resulting intrinsic firing frequencies (i.e. their frequencies under 

the same conditions but in the absence of electrical coupling), diverge by more than about 10% 

(Mancilla et al., 2007). The stability of phase-locking correlates with coupling strength. 

Interconnected neurons may also generate precise antisynchrony—alternating spikes or bursts 

in antiphase, i.e. with phase lags equal to half of the interspike interval. A traditional notion is 

that robust antisynchrony can emerge from pairs or groups of neurons that mutually inhibit one 

another, as in alternating locomotor circuits (Brown, 1914). Systems of model neurons with 

mutual inhibition can generate both synchrony and antisynchrony, sometimes bistably (Wang 

and Rinzel, 1992; van Vreeswijk et al., 1994; Lewis and Rinzel, 2003; Bem and Rinzel, 2004). 

Recordings from pairs of mutually inhibitory neurons in the cerebral cortex confirmed that they 

can generate antisynchronous and synchronous spiking, depending on conditions (Gibson et al., 

2005; Merriam et al., 2005; Hu and Agmon, 2011).  

Antisynchrony in neurons connected only by electrical synapses is predicted by some 

computational models (e.g. Sherman and Rinzel, 1992; Chow and Kopell, 2000; Nomura et al., 

2003; Bem and Rinzel, 2004). This might seem counter-intuitive, but recall that electrical 

synapses can also mediate inhibition. In fact, antisynchrony among electrically coupled model 

neurons is particularly sensitive to the shapes of action potentials and the intrinsic membrane 

conductances that underlie them (Chow and Kopell, 2000; Pfeuty et al., 2003; Nomura et al., 

2003). Antisynchronous states are often quite fragile, particularly as the sites of electrical 

synapses move more distally, away from spike-generating zones (Schwemmer and Lewis, 2014). 

Alas, experimental attempts to demonstrate spike antisynchrony mediated by electrical 

synapses alone have been unsuccessful so far. Bem et al. (2005) studied pairs of snail neurons 

connected, using a dynamic clamp system, with simulated electrical and/or chemical synapses 

(in fact, the simultaneously recorded neurons were actually in different ganglion preparations). 

Bistable antisynchrony and synchrony were easily supported by inhibitory connections with the 

addition of some electrical coupling, but the investigators could not persuade their cells to fire 
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in antisynchrony when they were connected exclusively by electrical synapses. Gibson et al. 

(2005) and Mancilla et al. (2007) studied cortical interneurons that were connected by natural 

chemical inhibitory and/or electrical synapses. Inhibition alone supported either synchrony or 

antisynchrony, depending on spike frequency; the presence of electrical synapses in addition to 

inhibition tended to stabilize the synchronous state, but cells coupled only by electrical 

synapses would not support antisychrony. Merriam et al. (2005) also recorded from cortical 

interneurons, used dynamic clamp to connect them, and concluded that electrical coupling by 

itself could not mediate antisynchrony.  

Many of the experimental studies reviewed here were performed on minimal neural circuits: 

cell pairs. Larger coupled networks are more realistic, complex, and poorly understood. The 

brain itself is a network of networks. Remarkably, in the special case of chimera states, some 

large nonbiological networks of coupled oscillators (mechanical metronomes!) can generate 

synchrony and disorder simultaneously (Blaha et al., 2016). Chimera states have been explored 

in simulated systems of large neural networks (Omelchenko et al., 2015; Bera et al., 2016; Majhi 

et al., 2016) but not yet, to my knowledge, in any real biological systems. 

Electrical synapses can trigger desynchronization 

Another remarkable phenomenon of an electrical coupled network is rapid switching from 

spike synchrony to a transient state of desynchronization.  This has been demonstrated most 

clearly in local networks of inhibitory Golgi interneurons in the cerebellar cortex in vitro 

(Vervaeke et al., 2010).  Golgi cells are interconnected primarily by electrical synapses of 

varying strengths. Because their action potentials have a deep, slow AHP, their electrical PSPs 

include a strong inhibitory phase, as described above (Dugué et al., 2009).  Under resting states 

the Golgi cells spike rhythmically and, thanks to their electrical synapses, quite synchronously.  

However, when one or more cells are abruptly excited by a synaptic input strong enough to 

trigger an action potential, inhibitory (hyperpolarizing) electrical PSPs of varying strengths and 

durations propagate out into neighboring cells.  These heterogeneous electrical PSPs induce 

different shifts in the timing of spikes among the local Golgi cells, effectively desynchronizing 

them.  In the absence of further excitatory inputs the network slowly, over seconds, 

resynchronizes and resumes its synchronous rhythmicity.  Thus, depending on recent history, 

the same electrical synapses within the Golgi cell network can mediate either synchrony and 

transient desynchrony of its spiking.  

The key properties required for electrical synapse-mediated desynchronization—action 

potentials with deep AHPs, electrical synapses of assorted strength, strong and sparse 

excitatory inputs—are common in the brain, so this mechanism may be widespread (Connors et 

al., 2010). 

Electrical synapses may facilitate or even induce network rhythmicity 

Many single neurons can generate intrinsic periodic activity, or rhythms. As we saw above, 

electrical synapses can synchronize or otherwise coordinate rhythms within a network of 

neurons. But can electrical synapses actually induce rhythms in a network of neurons that are 

otherwise nonrhythmic? Perhaps. The inferior olive provides a case study. 
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The excitatory cells of the inferior olivary nucleus are a well-studied system of gap junction-

coupled neurons. Their axons project to the cerebellar cortex and form the powerful climbing 

fiber inputs to Purkinje cells. Olivary neurons have a curious electrophysiology; they express 

strong voltage-dependent calcium and other conductances in their dendrites, and these allow 

them to generate spontaneous, robust, usually subthreshold oscillations of about 5-15 Hz, as 

well as unusually broad action potentials (Crill, 1970; Llinas and Yarom, 1981; Benardo and 

Foster, 1986; Mathy et al., 2009). Olivary cells are directly interconnected by electrical synapses 

only (Sotelo et al., 1974; Llinas, 2013). Not surprisingly, this coupling can synchronize their 

subthreshold voltage fluctuations as well as occasional action potentials that are phase-locked 

to subthreshold cycles (Leznik et al., 2002; Long et al., 2002; De Zeeuw et al., 2003; Leznik and 

Llinas, 2005).  

Electrical coupling between olivary cells requires connexin36 (Cx36), the primary neuronal gap 

junction protein. Deletion of the Cx36-coding gene effectively abolishes electrical coupling 

between olivary neurons (Long et al., 2002; De Zeeuw et al., 2003). Under these conditions, the 

large majority of synaptically disconnected neurons continue to generate spontaneous 

oscillations, albeit asynchronously. The simplest explanation is that most individual olivary 

neurons are vigorous oscillators under normal, wild-type conditions, and that electrical 

synapses allow neighboring cells to synchronize their rhythms (Long et al., 2002). An alternative 

possibility originates from computational models showing that, in principle, subthreshold 

rhythms themselves could be an emergent property of electrically coupled networks of 

intrinsically nonrhythmic cells (Smolen et al., 1993; Manor et al., 1997; Loewenstein et al., 

2001). Inferior olivary versions of the models employ simulated neurons with olive-like, though 

heterogeneous, combinations of active membrane properties, coupled by electrical synapses.  

In the absence of coupling and external drives, the neurons are silent and rest at different 

membrane potentials; adequately strong electrical coupling allows their potentials to begin 

equalizing, bringing them into a voltage range compatible with spontaneous or conditional 

rhythmicity.  

The hypothesis that rhythmicity per se—not just the synchrony of rhythms—depends on 

electrical synapses in the olive has yet to be tested directly. Genetic deletion of Cx36 suffers 

from potential uncontrolled complications of developmental compensation (De Zeeuw et al., 

2003). Definitive resolution of this issue, like so many others in the field of gap junction 

neurobiology, awaits the development of rapid, effective, selective, nontoxic, reversible 

methods of blocking gap junction channels (Connors, 2012; Verselis and Srinivas, 2013). 

Apropos of rhythmicity in the olivary nucleus, a recent study has nicely tested another 

longstanding idea about the role of electrical synapses. Although the olive has no inhibitory 

interneurons, it does receive a GABAergic input from axons originating in cerebellar nuclei 

(Sotelo et al., 1986). These inhibitory synapses terminate on the same distal dendritic spines 

that include the gap junctions coupling olivary neurons. The synaptic adjacency suggested to 

Llinás (1974) that activation of inhibitory inputs from the cerebellum might effectively shunt the 

current that otherwise allows electrical synapses to mediate olivary cell interactions, similar to 

a mechanism previously demonstrated in the Navanax nervous system (Spira and Bennett, 

1972). Using modern tools of electrophysiology and optogenetics, Lefler et al. (2014) 

demonstrated that selectively activating the inhibitory inputs to the olive does indeed reduce 
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electrical coupling between its neurons, and also rapidly reduces or abolishes spontaneous 

subthreshold rhythms. Whether the loss of rhythms is due entirely to the uncoupling effect, or 

to contributions from other mechanisms such as general membrane shunting, is not clear. 

What is evident is that dendritic inhibitory synapses can quickly (in milliseconds), selectively, 

effectively, and reversibly influence electrical coupling between neurons without modulating 

gap junction channels directly. Judging from synaptic relationships in other parts of the brain, 

this could be a common mechanism. 

Ironically, perhaps, too much electrical coupling may also be incompatible with neuronal 

rhythmicity under some circumstances. Ozden et al. (2004) used a hybrid model system 

consisting of an electronic (olivary neuron-like) oscillator coupled to an actual, living olivary 

neuron. They found that coupling strength could determine whether rhythms were 

synchronized, antisynchronized, or, at relatively strong coupling strengths, abruptly 

terminated—the so-called “amplitude death” regime. 

Whether electrical synapses are essential for rhythm generation in vertebrate networks beyond 

the olivary nucleus is unknown.  There is certainly enormous interest in the roles of electrical 

synapses in rhythms of the cerebral cortex, in particular, but the complexity of its circuits and 

their many oscillation types challenge experimentalists and theoreticians.  Deletion of Cx36 

abolishes nearly all electrical synaptic coupling between inhibitory interneurons of the cerebral 

cortex (Deans et al., 2001; Hormuzdi et al., 2001). It also reduces the power of gamma-

frequency rhythms in the cortex in vivo (Buhl et al., 2003), an emergent network process that 

may require the synchronous activity of electrically coupled parvalbumin (PV)-expressing 

interneurons (Buzsaki and Wang, 2012). Although this suggests that electrical synapses 

between PV interneurons may be important for gamma rhythm generation, other experimental 

models of gamma-range activity have shown variable dependencies on Cx36 (Hormuzdi et al., 

2001; Salkoff et al., 2015; Neske and Connors, 2016). The usual complicating factor applies; 

Cx36 knockout animals may express anomalous neural circuitry or intrinsic properties as they 

develop in the absence of most electrical synapses (Butovas et al., 2006; Postma et al., 2011). 

Electrical synapses can enhance signal-to-noise ratios 

Cellular processes are inherently noisy—membrane potentials vacillate as, for example, ion 

channels flip stochastically between open and closed states, signaling molecules trigger 

downstream cascades, and vesicles fuse and liberate transmitter (White et al., 2000; Sterling 

and Laughlin, 2015). As long as voltage noise occurs independently (asynchronously) in each cell 

of a network, coupling the cells with gap junctions will attenuate noise; currents are channeled 

into adjacent cells, and noise is essentially averaged across the network so that large 

fluctuations in any single cell are unlikely. The noise-reducing ability of electrically coupled 

networks of cells has been studied theoretically (e.g. Sherman et al. 1988; Usher et al., 1999; 

Medvedev, 2009).  Behaviorally important signals can also be attenuated by gap junction 

coupling, but if signals are correlated across cells they will be reduced less than asynchronous 

noise. The consequence is that electrical synapses can improve signal-to-noise ratios in suitable 

circuits. 
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Neuronal gap junctions are pervasive in the retina, where they serve both to transmit specific 

sensory signals and to enhance signal strength relative to noise (Bloomfield and Völgyi, 2009; 

Massey, 2009). Retinal cones, photoreceptors that detect light of moderate to high intensity, 

are the best-studied example of signal-to-noise enhancement in electrically coupled neural 

networks. Cones are arranged in two-dimensional sheets interconnected by gap junctions 

(Baylor et al., 1971; Tsukamoto et al., 1992). You might expect that coupling among cones 

would diminish visual acuity. Overall, however, cone-to-cone electrical synapses optimize the 

spatial resolution of light detection by reducing noise, as demonstrated by orchestrated studies 

of cone morphology, electrophysiology, psychophysics, and computational modeling (Lamb and 

Simon, 1976; DeVries et al., 2002; Laughlin, 2002). Uncorrelated cone noise is sharply 

dissipated, because it tends to be cancelled out as it is shared by coupled cones. Light stimuli 

falling on the retina evoke cone receptor potentials that tend, unlike noise, to be correlated 

across local cone neighborhoods; correlated signals are dissipated much less than asynchronous 

noise. In essence, the cones tolerate a bit of visual blurring in order to gain a cleaner visual 

signal. By using electrical coupling the cone network can improve its signal-to-noise ratio by 

about 80% (DeVries et al., 2002). 

Electrical synapses may also enhance signal-to-noise ratios in neurons other than 

photoreceptors, although direct evidence is limited. Again, the best studied circuits are in the 

retina (Bloomfield and Völgyi, 2009; Massey, 2009; Hartveit and Veruki, 2012; Völgyi et al., 

2013). Rods—photoreceptors that operate at low light levels—can respond to single photons 

when dark-adapted. Rods are gap junction-coupled to one another and, as with cones, inter-rod 

coupling may improve signal-to-noise ratios under moderate light levels. Rods also synapse 

onto bipolar neurons, which in turn provide input to a type of inhibitory interneuron called the 

AII amacrine cell. AII cells synapse onto ganglion cells, the output neurons of the retina. AII 

amacrine cells are coupled to one another via Cx36-containing gap junctions, although when 

light levels are very low this gap junction coupling is minimized by a modulatory action of 

dopamine (Bloomfield et al., 1997); presumably that optimizes the sensitivity of the circuit to 

single photons. As background light rises moderately (“twilight” conditions), however, 

asynchronous noise generated by rods becomes significant and electrical coupling between AII 

amacrine cells increases. Inputs from multiple rods converge, via bipolar neurons, onto each 

amacrine cell. Modeling suggests that the coupling between AII amacrine cells can serve to 

suppress asynchronous noise more than light-triggered rod signals (Smith and Vardi, 1995). 

Indeed, when AII cells are uncoupled by knocking out Cx36 their noise levels double (Dunn et 

al., 2006), and the sensitivity of the most light-sensitive ganglion cells is reduced (Völgyi et al., 

2004). 

Experimental evidence for a signal-to-noise-enhancing function of electrical synapses outside 

the retina is scant. Examples include sets of coupled interneurons in the the antenna lobe of 

flies (Yaksi and Wilson, 2010), the olfactory bulb of fish (Zhu et al., 2013), and the locus 

coeruleus of primates (Usher et al., 1999). Considering the ubiquitous presence of biological 

noise in neural networks, it seems likely that noise reduction is a general function of electrical 

synapses throughout the brain. This is an issue ripe for a closer look. 
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Electrical synapses interact with intrinsic membrane excitability 

The famously nonlinear electrical properties of most neuronal membranes lead to important  

and often complex interactions with synaptic inputs.  Chemical synaptic inputs onto neuronal 

membranes have been studied extensively.  Depolarization generated during an EPSP, for 

example, can activate postsynaptic voltage-gated channels that alter the size and time course 

of PSPs (Joyner and Westerfield, 1982; Westerfield and Joyner, 1982). Dendrites are particularly 

important sites for nonlinear interactions, since synapses densely innervate them and they 

often express a variety of voltage-gated ion channels. The activation ranges of these channels 

can overlap with voltages just above and below the resting membrane potential, so even small 

PSPs can influence channel gating. In dendrites of cortical pyramidal neurons, for example, 

EPSPs can activate voltage-gated sodium, calcium, HCN, or NMDA receptor currents that 

amplify and prolong postsynaptic events, and may even trigger local dendritic spikes (Spruston, 

2008; Stuart and Spruston, 2015). EPSPs can also trigger opening of voltage- and time-

dependent potassium currents that diminish and shorten postsynaptic events. Inhibitory 

chemical synapses, which generate hyperpolarization and conductance increases, can add 

further complexity and richness to dendritic interactions (Gidon and Segev, 2012).  

Electrical synapses can also tap into these intrinsic membrane mechanisms. Studies of several 

types of neurons nicely illustrate the principle. Electrical PSPs of auditory axon terminals in 

goldfish are amplified by subthreshold sodium currents and diminished by potassium currents 

(Curti and Pereda, 2004). Inhibitory interneurons of the cerebellar cortex are often coupled by 

gap junctions (Mann-Metzer and Yarom, 1999). Action potentials in one interneuron evoke 

electrical PSPs in its neighbors, and these PSPs activate intrinsic membrane currents that 

amplify them. Consistent with this, when voltage-sensitive sodium channels of cerebellar Golgi 

cells (a type of inhibitory interneuron) are blocked with the local anesthetic QX-314, a sodium 

channel blocker, amplification of the PSPs is abolished (Dugué et al., 2009). Sensory neurons in 

the mesencephalic trigeminal nucleus are a particularly striking case (Curti et al., 2012). These 

cells are strongly connected by soma-to-soma gap junctions. Presynaptic action potentials 

trigger depolarizing electrical PSPs that activate persistent, voltage-dependent, QX-314-

sensitive sodium channels in the postsynaptic membrane.  The resulting inward sodium 

currents serve to amplify the PSPs and enhance synchronization. Inhibitory neurons of the 

thalamic reticular nucleus (TRN) tell a similar story. TRN cells are coupled by electrical synapses 

(Landisman et al., 2002), they also express a persistent sodium conductance, and when one 

TRN cell spikes tonically the electrical PSPs it generates activate postsynaptic sodium current 

(Haas and Landisman, 2012). That current can boost the electrical synaptic efficacy between 

TRN cells by as much as four-fold and enhance the synchrony of tonic spiking between TRN 

cells. 

Dendrites with exceptionally strong voltage-dependent cation conductances allow electrical 

synapses to mediate particularly robust spike synchrony. The distal dendrites of mitral cells in 

the olfactory bulb, for example, can generate sodium and calcium-dependent action potentials 

(Bischofberger and Jonas, 1997; Chen et al., 1997). Branches of mitral cell dendrites that lie 

within single glomeruli are coupled by Cx36-dependent gap junctions and excitatory chemical 

synapses, while dendrites in different glomeruli are unconnected (Schoppa and Westbrook, 

2001; Schoppa and Urban, 2003; Christie et al., 2005). Computational modeling suggests that 
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both active intrinsic conductances and the high input resistance of the dendrites contribute 

critically to the efficacy of dendro-dendritic electrical synapses in the bulb (Migliore et al., 

2005). In addition, synchronization of somatic action potentials of mitral cells requires the 

concerted actions of electrical synapses and glutamatergic synapses colocalized in the dendrites 

(Schoppa and Westbrook, 2002; Christie et al., 2005). 

The auditory brainstem circuit comprising fusiform and stellate neurons, mentioned above, 

provides a dramatic example of complex interactions between chemical synapses, electrical 

synapses, and intrinsic membrane mechanisms. Sensory axons can evoke fast glutamatergic 

EPSPs in the fusiform cells.  This initial depolarizing EPSP—even when it is too small to reach 

action potential threshold—is boosted and prolonged by the activation of voltage-dependent 

sodium currents. The depolarization in turn causes deactivation of HCN cation channels, which 

lead to transient hyperpolarization (Apostolides and Trussell, 2014).  The result is a slow, 

biphasic, noncanonical synaptic potential in the fusiform cell. This signal is then transmitted via 

electrical synapses to the stellate cells, where it generates excitation that is often strong 

enough to evoke spikes, followed by hyperpolarizing inhibition.  

Electrical synapses at distal dendro-dendritic locations will be strongly influenced by their 

interactions with dendritic intrinsic membrane properties. However, many electrical synapses 

in vertebrate central circuits occupy positions adjacent to, or on, somata and axons. Examples 

include proximal dendro-dendritic gap junctions between some interneurons of the cat visual 

cortex (Fukuda, 2017), the soma-somatic junctions of mesencephalic trigeminal neurons (Curti 

et al., 2012), axo-dendritic junctions of fish and rodents (Korn and Faber, 2005; Pereda et al., 

2004; Hamzei-Sichani, 2012; Nagy, 2012), and axo-axonic connections in rat hippocampus 

(Traub et al., 2002; Hamzei-Sichani, 2007). Proximity to axons offers electrical synapses rich 

opportunities for nonlinear interactions because axon initial segments, nodes of Ranvier, and 

presynaptic terminals may have exceedingly high densities of voltage-dependent sodium, 

potassium, and calcium channels, as well as high input resistances (Debanne et al., 2011; 

Bender and Trussell, 2012). For example, modeling studies and in vitro experiments suggest 

that axons with electrical synapses strong enough to mediate spike-to-spike transfer may 

generate fast oscillations in networks of the cerebral cortex (Traub et al., 2002; Simon et al., 

2014). 

Electrical synapses interact with chemical synapses 

Electrical synapses are indifferent to the source of the electrical signals they transmit. One 

common source is chemical synapses, leading to the curious situation where chemically 

triggered PSPs are propagated through electrical synapses. Examples include depolarizing 

GABAergic PSPs passing from one hippocampal interneuron, through gap junctions, to another 

(Zsiros et al., 2006), and cholinergic PSPs passing between coupled spinal Renshaw cells 

(Lamotte d'Incamps et al., 2012). The general function of such an arrangement might be to 

equalize or distribute synaptic effects within a coupled network of neurons with similar 

functions, perhaps to enhance input sensitivity, or to reduce asynchronous synaptic noise. 

Electrical synapses are often located closely adjacent to chemical synapses (Sotelo and Palay, 

1970; Shapovalov and Shiriaev, 1980; Pereda et al., 2004; Hamzei-Sichani et al., 2007; Hamzei-
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Sichani et al., 2012; Nagy, 2012; Rash et al., 2015; Rubio and Nagy, 2015). The two synapse 

types can often interact directly, in both directions, over a range of time scales, and in a variety 

of ways (O'Brien, 2014; Pereda, 2014; Haas et al., 2016; Pereda, 2016). Here I will focus on 

examples of electrical synapses that rapidly regulate chemical synapses. 

The retina provides an instructive example of interaction between electrical synapses and the 

highly nonlinear mechanisms of neurotransmitter release from presynaptic terminals. Bipolar 

cells are electrically coupled to one another; this coupling allows networks of bipolar cells to 

integrate visual inputs from photoreceptors arrayed laterally across the retina. The bipolar cells 

also make excitatory glutamatergic synapses onto ganglion cell dendrites and, like most 

chemical synapses, these release their transmitter at rates that increase steeply as the 

presynaptic membrane depolarizes. The stage is thus set: laterally integrated electrical PSPs in 

bipolar cells can sharply modulate the release of glutamate onto ganglion cells by altering 

presynaptic membrane potential and thus the transmitter release mechanism (Demb and 

Singer, 2016; Kuo et al., 2016). The authors argue that this circuit arrangement increases the 

sensitivity of the retina to moving stimuli. Similar coordination between electrical and chemical 

synapses seems likely to occur in other types of central neural circuits.  

A different style of interaction may mediate a form of lateral excitation in electrically coupled 

distal dendrites of mitral cells in the olfactory bulb (Christie et al., 2005). Activation of a 

glomerulus can trigger the synchronous spiking of mitral cells, and the actions of both electrical 

synapses and dendro-dendritic glutamate release are critical (Christie and Westbrook, 2006). 

The precise mechanism of interaction is not clear, but strong activity of mitral cells causes 

dendritic release of glutamate, which activates glutamatergic autoreceptors that depolarize the 

same dendrite. These depolarizations are communicated to neighboring mitral cell dendrites 

through electrical synapses. 

Asymmetry and rectification in electrical synapses  

The interactions between pairs of electrically coupled neurons are often unbalanced. There are 

two general underlying mechanisms: rectifying gap junction channels, and unequal cell sizes, 

shapes, or membrane properties. Rectification arises from heteromeric gap junction channels, 

i.e. channels with different subunit types expressed by the two participating neurons (Phelan et 

al., 2008; Marder, 2009). The resulting asymmetric channel structure leads to asymmetric 

gating mechanisms and voltage-dependencies (Palacios-Prado et al., 2014); the consequence is 

that current flows more easily in one direction than the other. The voltage-dependent gating 

kinetics of rectifying channels can be very fast (Jaslove and Brink, 1986).  

Strongly rectifying electrical synapses have been observed more often in invertebrate than 

vertebrate nervous systems. The functions of rectifying junctions may include ensuring the 

unidirectionality of propagating signals, as in the motor circuits of the crayfish (Furshpan and 

Potter, 1959), and perhaps leech (Nicholls and Purves, 1970) and lamprey (Ringham, 1975). In 

this way, rectification makes an electrical synapse more similar to a chemical synapse, favoring 

one-way signal propagation. The analogy to chemical synapses fails when we consider 

hyperpolarizing signals such as IPSPs, however; a rectifying junction that favors depolarizing 

signals in one direction will also favor hyperpolarizing signal propagation in the other direction, 
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something very few chemical synapses can accomplish.  Another function proposed for 

rectifying synapses is coincidence detection among convergent inputs to single neurons 

(Edwards et al., 1998; Marder, 1998).  

Few examples of heterotypic, rectifying electrical synapses have been observed in vertebrate 

circuits. The most well characterized examples are the auditory nerve-to-Mauther neuron 

contacts in the goldfish brainstem (Rash et al., 2013). The polarity of rectification in these 

synapses is arranged such that they favor coincident auditory inputs, and thus may enhance the 

sensitivity of sensory transmission. This particular type of rectifying synapse is probably unique 

to teleost fish, because it is comprised of a heterotypic arrangement of two homologs (Cx35 

and Cx34.7) of mammalian Cx36, which are not found in other vertebrates (Rash et al., 2013, 

2015).  

Another example of rectification has been observed between mammalian TRN neurons. 

Electrical synapses are common among TRN cells of wild-type mice, but only a small fraction of 

cell pairs are still electrically coupled in Cx36 knockouts (Landisman et al., 2002; Lee et al., 

2014).  Zolnik and Connors (2016) found that the electrical connections between TRN cells of 

the Cx36 knockout were significantly more asymmetric than wild-type connections. Asymmetry 

did not correlate with cell input resistances, and may derive from junctional rectification.  The 

molecular basis of rectification in non-Cx36 TRN junctions is unknown. 

Heterotypic gap junctions are not the only mechanism of electrical synapse asymmetry; one-

sided post-translational channel modifications, such as junctional plasticity or modulation 

mechanisms (Pereda et al., 2004; Landisman and Connors, 2005), may also lead to asymmetry 

(Haas et al., 2011; Lefler et al., 2014; Palacios-Prado et al., 2014; Sevetson and Haas, 2015). 

These mechanisms have the potential for dynamically inducing and regulating asymmetry 

across nearly all types of electrical synapses.  

Strongly asymmetric electrical coupling can also arise from differences in input resistances, 

which can derive from disparate cell sizes or membrane properties (Bennett, 1966, 1977). 

Heterologous electrical coupling—gap junctions between neurons of distinctly different types, 

and often sizes—is common in vertebrate central nervous systems. Examples include: many 

types of retinal neurons (Vaney, 2002; Veruki and Hartveit, 2002; Bloomfield and Volgyi, 2009), 

primary auditory axons and Mauthner cells in fish (Korn and Faber, 2005; Pereda, 2014), some 

mammalian auditory brainstem neurons (Apostolides and Trussell, 2013), spinal motor and 

sensory circuits (Kiehn and Tresch, 2002; Szczupak, 2016), and certain combinations of 

dissimilar inhibitory interneurons in the neocortex (Gibson et al., 1999; Galarreta and Hestrin, 

2001; Simon et al., 2005) and hippocampus (Zsiros and Maccaferri, 2005).  

An auditory circuit in the mouse cochlear nucleus illustrates some consequences of size 

asymmetry. Fusiform cells are much larger than the stellate cells they are coupled to, and 

stellate cells have much higher input resistances than fusiform cells (Apostolides and Trussell, 

2013). This large resistive differential leads to strongly asymmetric electrical coupling that 

favors, by about four-fold, the transfer of voltage signals from fusiform cells to stellate cells 

over the reverse direction.  
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It is worth noting that electrical synapses with rectifying channels could, in principle, offset 

asymmetric coupling caused by different cellular input resistances to create more balanced 

bidirectional coupling. 

CONCLUSIONS 

The function of a synapse is to allow one cell to influence other cells. Electrical synapses—

optimized for simplicity, efficiency, speed, and the artless conductance of nonspecific ionic 

current—might seem to have narrow functional potential. However, as electrical synapses are 

explored in an ever-widening range of circuits, we see that their roles go far beyond the early 

notions of speed and synchrony. Electrical synapses can excite, inhibit, synchronize and 

desynchronize, phase-shift, direct and redirect, detect coincidence, improve signal-to-noise 

ratios, grow and shrink, adapt, and productively interact with highly nonlinear membrane and 

synaptic mechanisms.  Some of these functions have only been noticed in one or two 

specialized circuits so far, yet nearly all of them are likely to be more widespread.  
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